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1. Introduction 

A bending body projectile is a maneuver technology concept being investigated for 
the small-diameter munitions research area. This research area is part of the US 
Army Research Laboratory’s Science for Lethality and Protection Campaign. The 
Army is concerned with munitions capable of both precision and accuracy to 
minimize collateral damage and maximize lethal effects. Bending body technology 
may enable projectiles to achieve the required control authority necessary to 
achieve this goal.1 

Current maneuvering munitions rely on moving control surfaces (e.g., canards or 
fins), reaction control jets, or thrust vectoring for their control authority. Canards 
are currently the most common method of control for gun-launched projectiles. 
Although canards have proven effective for some missions, bending body 
technology offers the potential for even greater control authority, which would 
improve performance and increase mission versatility. Bending body technology 
may be advantageous compared with moving control surfaces for multiple reasons: 
less drag when not maneuvering as there are no external control surfaces, no 
canard-induced aerodynamic issues,1–4 structural integrity during launch, and 
volumetric constraints with associated launch platforms.  

Past research on deflectable projectile structure has been primarily concerned with 
deflecting the nose cone at its base.5–6 Landers et al.5 investigated aerodynamic 
stability and pitch control effectiveness of a hypervelocity projectile with a 
deflectable nose as compared with canard controls for a projectile with a large 
length-to-diameter ratio. Shoesmith et al.7 conducted a computational investigation 
of aerodynamic characteristics for a supersonic projectile with deflectable nose 
control. Both of these investigations found that a deflectable nose could provide 
control authority at supersonic velocities but were limited in both angle of attack 
(α) range and nose deflection angle range. Youn and Silton1 investigated the 
effective control of a deflectable nose cone as well as a body deflection for a 
supersonic projectile. In addition to a second bend, a larger range of angles of attack 
was considered as well as significantly larger deflection angles. The additional bend 
demonstrated increasing control authority at the cost of increased drag. The current 
investigation expands on this concept by seeking to optimize the control parameters 
associated with the deflections. 

The challenge with optimizing the bending body projectile problem is the highly 
dimensional, multimodal nature of the problem. Simple optimization techniques 
such as Golden section search or Newton–Raphson method are not compatible or 
are impractical to implement. Li et al.8 demonstrated that evolutionary 
programming can be used for aerodynamically driven shape optimization. Many 
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other researchers and scientists have demonstrated similar investigations.9–11 
Evolutionary programming is a powerful optimization technique that is widely 
applicable to scientific research and engineering industry. As a subset of machine 
learning, evolutionary programming provides a robust approach to the difficult 
optimization task. 

The evolutionary programming technique used in this investigation is a genetic 
algorithm. A genetic algorithm evolves multiple generations of a population of 
individuals where each individual is a “solution” to the problem or objective 
function. The objective function characterizes what is being optimized. Individuals 
that are found to solve the problem poorly are progressively removed from future 
generations, while those found to solve the problem well thrive in future 
generations. The algorithm iterates until a convergence condition is met.8–12 
Defining aspects of genetic algorithms include metaheuristic, stochastic, and 
conditionally global. Genetic algorithms are metaheuristic because they find 
practical solutions instead of exact or perfect solutions. They are stochastic because 
elements of the algorithm use pseudo-random number generation techniques. 
Finally, they are conditionally global depending on how the algorithm is 
constructed. If the algorithm is not properly constructed, there may not be enough 
diversity in the generations to search the entire design space of the problem. This 
issue results in optimized individuals finding local extrema instead of global 
extrema. 

In the current investigation, an individual is a particular configuration of the 
projectile. Simulations of the configurations are completed to evaluate how well 
they solve the objective function. The objective function is an equation set that 
evaluates the performance of individuals. Successive generations are made to 
emphasize well-performing individuals through performance-based selection and 
recombination. Although well-performing individuals are given greater attention, 
it is not necessarily guaranteed that future generations will always produce  
better-performing individuals. The theory is that with enough iterations of the 
algorithm and a large, diverse sample population, performance across individuals 
will generally increase. 

Using a genetic algorithm, the current investigation seeks to identify optimal 
bending body configurations for a supersonic projectile that maximize 
maneuverability while minimizing drag. These optimal configurations are found 
for each case (α and freestream Mach number, M∞) considered in the test matrix. 
This matrix, to be described later, consists of 51 different cases. 
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2. Projectile Design 

The projectile being studied is the Air Force Finner (AFF): a 30-mm diameter (D), 
fin-stabilized projectile. This projectile was chosen because it is a baseline 
supersonic geometry that has been studied extensively with copious computational 
and empirical data available for comparison.13–18 The projectile has 4 clipped delta 
fins on the end of the projectile spaced equidistant about its axis. The fins are 
uncanted and parallel with the projectile’s axis. The supersonic projectile has a 
length-to-diameter ratio of 10 and the nose cone length is 2.5 D. The fins are 
beveled on the leading and trailing edges with a root cord of 4

3
 𝐷𝐷 and a semispan of 

0.5 D. The baseline straight body configuration is shown in Fig. 1. 

 

Fig. 1 Baseline straight body configuration 

The projectile is designed to fly in the baseline straight body configuration and 
morph into in a bent body configuration when a maneuver is commanded. A generic 
bent body configuration is shown in Fig. 2 with control parameters Φ1,Φ2, and 𝑄𝑄1. 
The first bend (Φ1) is located at the base of the nose cone, and the second bend (Φ2) 
is located between the base of the nose cone and the projectile’s center of gravity 
(CG). The location of the second bend (Q1) is allowed to vary between 1.25 and 
68.75 mm from the CG in 4.5-mm increments. The bend angles (Φ1 and Φ2) are 
permitted to vary from 0° to 7.5° in 0.5° increments. 

 

Fig. 2 Generic bent body configuration 
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Angle of attack of the projectile is defined as the angle between the freestream 
velocity vector and the trajectory vector of the projectile. The trajectory of the 
projectile in the straight and bent body configuration can be taken as the axial 
direction of the portion of the projectile behind the CG. The tail of the trajectory 
vector would be located aft of the projectile, and the head of the vector would be 
located at the CG. All of the cases for each 𝛼𝛼 are completed at Mach 2, Mach 3, 
and Mach 4 for standard sea level temperature and pressure (298 K, 101,325 Pa). 

3. Methodology 

3.1 Simulation Methods Explored 

Aerodynamic coefficients must be obtained for each configuration to evaluate the 
performance. Since a large number of configurations are being investigated, it is 
necessary to select the most accurate and efficient method to determine these 
coefficients. Three simulation methods were considered for this investigation: 
Missile Datcom,19 SOLIDWORKS Flow Simulation,20 and CFD++ by Metacomp 
Technologies.21  

Missile Datcom is an aero-prediction code that uses a hybrid of empirical and 
analytical techniques to calculate aerodynamic coefficients. This solver has the 
advantage of expedited analysis compared with other solvers by several orders of 
magnitude. This advantage is made at a cost of limited modeling capability and 
accuracy. Limited accuracy was determined by comparing Missile Datcom results 
with CFD++ results for the baseline (straight body) projectile geometry analyzed by 
Youn and Silton.1 Data were compared at 5 angles of attack between –12° and 12°. 
Axial force coefficient (CX) was predicted within 12%, even at Mach 4, and normal 
force coefficient (CN) predicted within 18% across the Mach number range (Fig. 3). 
However, pitching moment coefficient (Cm) was not well predicted at all, with 
errors in excess of 30% for most of the cases compared. The exception was for low 
angles of attack at Mach 2. This was of concern as Cm has a large effect on 
maneuverability. Analysis of the cause of the discrepancy in pitching moment 
coefficient was not conducted, as it was unclear at the time if it would be possible 
to model a bending body geometry within Missile Datcom. 
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Fig. 3 Percent error difference between Missile Datcom and CFD++ results for projectile geometry in Youn and Silton1 
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SOLIDWORKS Flow Simulation is a computational fluid dynamics (CFD) solver 
embedded in a computer-aided design (CAD) software. Using CAD software, this 
solver has virtually unbounded modeling capability. This advantage also provides 
meshing that is expedited by the embedded nature of the solver. Simulation time 
and accuracy, however, scale with mesh refinement. In addition, limited licenses 
were available and simulations can only be run on a computer under the Windows 
operating system. These disadvantages together translate to an impractical time 
requirement for simulations. Results from SOLIDWORKS Flow Simulation were 
also compared with the CFD++ results from Youn and Silton1 (Fig. 4). The 
comparison was made with the same methodology as the comparison made in 
Fig. 3. Interestingly, the data comparison also results in the pitching moment 
coefficient being the least accurate. It is important to mention that to achieve 
practical simulation time, the mesh used for the SOLIDWORKS simulations was a 
significantly smaller size at just 150,000 cells. It is likely that a larger mesh size 
(similar to meshes used for CFD++) would increase accuracy. 

The final simulation method explored was the commercial software CFD++ by 
Metacomp Technologies. This is a stand-alone CFD analysis tool that accepts mesh 
files from its partner commercial software MIME (Multipurpose Intelligent 
Meshing Environment) which accepts native CAD geometry.22 MIME permits 
CFD++ to have virtually unbounded modeling capabilities similar to that of 
SOLIDWORKS Flow Simulation. As with SOLIDWORKS Flow Simulation, time 
requirements and accuracy scale with mesh refinement. Because CFD++ is available 
on the US Department of Defense (DOD) High Performance Computing 
Modernization Program (HPCMP), licensing and computational resources were not 
restrictive. Although validation studies were not completed on the AFF geometry 
for the mesh considered in the present paper, CFD++ has previously been used with 
sufficient accuracy for the AFF on a different mesh in the Mach regime investigated 
in this study.17,18 The current mesh is similar to that of Youn and Silton.1 The 
advantage of CFD++ over Missile Datcom, although significantly more consuming 
of resources, is the versatility of geometry as well as the ability to analyze the flow 
field as well as the aerodynamic coefficients, which were shown previously only to 
be predicted adequately at best for this geometry. Considering the advantages and 
disadvantages for each simulation method, CFD++ was selected as the suitable 
simulation method. 
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Fig. 4 Percent error difference between SOLIDWORKS Flow Simulation results and CFD++ results from Youn and Silton1 
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3.2 CFD Methodology 

All computational meshes were created using MIME.22 Longitudinal symmetry was 
taken advantage of to reduce the total mesh size by a factor of 2. A typical size for 
a configuration’s global mesh was 9.1–12 million cells. The surface mesh on the 
body was created using Delaunay triangulation and the growth rate was restricted 
to 1.4. A close-up of the fin region can be seen in Fig 5. The cells close to the 
surface and within the boundary layer were prism cells while cells in the far field 
were tetrahedrals. Figure 6 shows a close-up of the boundary layer region. A 
boundary layer spacing of 1e-6 m with a growth rate of 1.2 was chosen such that 
the nondimensional wall distance was approximately 1. The growth rate of the 
tetrahedrals was also 1.4. Figure 7 shows a global mesh for individual 28 from 
generation 1. Density boxes were used around the body and in the wake to control 
mesh growth for adequate resolution of the shock and wake regions.  

 

 

Fig. 5 A 3-D cut plane of fin region cells 
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Fig. 6 Boundary layer size 

 

 

Fig. 7 Individual 28 from generation 1 
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All configurations were simulated using the Reynolds-averaged Navier–Stokes 
equation set with the realizable k-𝜀𝜀 turbulence closure model. All simulations used 
air at standard temperature and pressure at sea level altitude for freestream fluid 
properties. The simulations were started at 𝛼𝛼 = –8° as a steady-state case, and then 
swept up in 0.25° increments as transient, quasi-steady simulations until 𝛼𝛼 = 8° 
using the methodology described by Sahu and Heavey23 and Youn and Silton.1 A 
0.25° increment is necessary to ensure convergence of the quasi-steady simulations; 
only 1° increments are analyzed. The baseline straight body configuration was 
simulated as one of the individuals. Each mesh was partitioned into 96 different 
parts and simulated on Conrad, a Cray XC40 supercomputer located at the Navy 
DOD Supercomputing Resource Center at Stennis Space Center, Mississippi. 
Simulations for the complete range of angles of attack typically required 6–10 h for 
completion. The data collected from these simulations and used for optimization 
were pitching moment coefficient, axial force coefficient, and normal force 
coefficient. These coefficients are shown in Eqs. 1–3. 

 𝐶𝐶𝑚𝑚 = 𝑀𝑀
1
2𝛾𝛾𝑝𝑝∞𝑀𝑀∞

2𝑆𝑆𝑆𝑆
     , (1) 

   𝐶𝐶𝑋𝑋 = 𝐹𝐹𝑋𝑋
1
2𝛾𝛾𝑝𝑝∞M∞

2𝑆𝑆
     , (2) 

 𝐶𝐶𝑁𝑁 = 𝐹𝐹𝑁𝑁
1
2𝛾𝛾𝑝𝑝∞M∞

2𝑆𝑆
    , (3) 

where M is the pitching moment, FX is the axial force, FN is the normal force, γ is 
the gas constant for air (1.4), p∞ is freestream pressure, M∞ is freestream Mach 
number, and S is the area of the projectile. 

3.3 The Vector-Evaluated Genetic Algorithm 

The genetic algorithm is the tool used to optimize the shape of the different 
configurations. Each configuration is considered an individual in a population 
within a generation. These individuals are represented as a set of the 3 control 
parameters Φ1,Φ2, and 𝑄𝑄1. As a normalized set, each control parameter has a 
design space within a set of 16 bins. As integers, each control parameter is 
permitted to vary between 1 and 16. Within the algorithm, these individuals are 
converted from a set of 3 control parameters to a string of binary bits. Each control 
parameter is represented as 4 bits; therefore, an individual is represented at 12 bits. 
Each bit is referred to as a nucleotide. The complete string of nucleotides of an 
individual is called the genotype. The physical manifestation of the genotype 
(control parameters) is the phenotype (projectile shape). A sample genotype is 
shown in Fig. 8. All of the algorithm parameters and properties are listed in Table 1. 
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Each of the parameters will be discussed in greater detail in Sections 3.3.1 through 
3.3.4. 

 

Fig. 8 A sample genotype 

Table 1 Algorithm parameters and properties 

Initial population size 31 

Intermediate population size 6 

Priority coefficient vector <(1/2) , (1/3) , (1/6)> 

Natural selection cutoff 50% 

Crossover rate 70% 

Mutation rate 5% 

Confidence interval 90% 

3.3.1 The Objective Function 

The genetic algorithm in this investigation is vector evaluated because the objective 
function is a weighted linear combination of goals creating a single metric of 
performance for an individual.12,24 The priority coefficient vector is how the goals 
(in this case the aerodynamic coefficients) are to be weighted. The aerodynamic 
coefficients considered as part of the priority coefficient vector are Cm at 1/2, CX at 
1/3, and CN at 1/6. These priority coefficients were chosen based on the importance 
of maximizing maneuverability and minimizing drag.  

To understand how this represents the physical performance of an individual, the 
objective function must be broken into smaller parts starting with a given set of 
aerodynamic coefficients from a generation of simulations. The objective function 
encompasses every calculation and measurement that is used to determine the 
geometry and aerodynamic coefficients, as well as those used to perform the 
optimization. The portions of the objective function that are based on physics (e.g., 
aerodynamic coefficients as determined by the CFD simulations) cannot be 
changed. Thus, only the portion of the objective function that has been created for 
this investigation (the genetic algorithm) will be discussed. 

The first step in the genetic algorithm is to determine the set size for each of the 
aerodynamic coefficients being considered (Eq. 4). The set size is determined by 
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the maximum (max) and minimum (min) values of the aerodynamic coefficient set. 
The data niche is the difference between coefficient values of the individuals 
required to make them unique. For example, if the maximum Cm is 2.02 and the 
minimum Cm is –1.09 for a given generation at a particular M∞ and α and the niche 
size is chosen as 0.01 (i.e., the values of Cm must differ by more the 0.01 to be 
considered unique), the set size is 311.7. The value score (Eq. 5) of each individual 
is determined by taking the value of the corresponding aerodynamic coefficient 
(value) and comparing it with the size and maximum value of the coefficient set. 
Therefore, if a given individual has a Cm value of 0.49, that individual would have 
a value score of 75.4. Value score equation structure normalizes fitness metrics and 
scales with their “relative impact” on aerodynamic performance. The value score is 
maximized for Cm and CN. 

 𝑠𝑠𝑠𝑠𝑠𝑠 ≡ {𝑚𝑚𝑚𝑚𝑚𝑚:𝑚𝑚𝑚𝑚𝑛𝑛ℎ𝑠𝑠:𝑚𝑚𝑚𝑚𝑚𝑚},     𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 =  𝑚𝑚𝑚𝑚𝑚𝑚− 𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑛𝑛ℎ𝑒𝑒

   (4) 

 𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝑠𝑠 𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝑒𝑒
𝑚𝑚𝑚𝑚𝑚𝑚

 ∗ 𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠     (5) 

The value score equation (Eq. 5) permits the algorithm to determine the tradeoff 
between the aerodynamic coefficients impact on the score of an individual. If a 
particular coefficient set has a smaller size (Eq. 4) compared with another 
coefficient set, it has less of an impact on the shape of the configurations and is 
reflected in the respective value scores of those coefficients. Each value score is 
then scaled by its priority coefficient to create its component score. The component 
scores are summed to create the final fitness score. The linear combination of 
component scores is what makes this algorithm vector evaluated.12,24 These 
concepts are shown in Eqs. 6 and 7. To normalize the set of fitness scores, each 
score is divided by the maximum score within the set. The result is a set of  
fitness-proportionate values for each individual (Eq. 8). 

 𝑛𝑛𝑠𝑠𝑚𝑚𝑐𝑐𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑐𝑐𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑝𝑝 𝑛𝑛𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑚𝑚𝑛𝑛𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 ∗ 𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝑠𝑠 𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠      (6) 

 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣 𝑐𝑐𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 =  ∑ (𝑛𝑛𝑠𝑠𝑚𝑚𝑐𝑐𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠)𝑗𝑗𝑁𝑁
𝑗𝑗=1       (7) 

 𝑐𝑐𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚𝑣𝑣𝑚𝑚𝑠𝑠𝑝𝑝 =  (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣 𝑓𝑓𝑚𝑚𝑓𝑓𝑚𝑚𝑒𝑒𝑓𝑓𝑓𝑓 𝑓𝑓𝑛𝑛𝑠𝑠𝑠𝑠𝑒𝑒)𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑚𝑚 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣 𝑓𝑓𝑚𝑚𝑓𝑓𝑚𝑚𝑒𝑒𝑓𝑓𝑓𝑓 𝑓𝑓𝑛𝑛𝑠𝑠𝑠𝑠𝑒𝑒

= 𝑤𝑤𝑖𝑖
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

     (8) 

A slight modification of the value score equation is required to achieve 
minimization, as is necessary for CX. This modification is shown in Eq. 9. Using 
this modification, the value score increases for decreasing aerodynamic coefficient 
value. This is how minimization and maximization can be considered 
simultaneously in vector evaluation. 

 𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝑠𝑠 𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝑒𝑒

 ∗ 𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠      (9) 
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3.3.2 Selection 

Selection comprises 2 phases: natural and parental. Natural selection is simply 
finding the median fitness score in the population and then removing all of the 
corresponding individuals at or below this threshold (the natural selection cutoff). 
The resulting population is considered the fit population. Parental pairs are then 
selected from the fit population. Parental selection is guided by fitness 
proportionate probability with stochastic acceptance25–27 also known as roulette 
wheel selection. An individual is first selected with uniform probability. The 
probability an individual is selected as a parent is based on its fitness-proportionate 
value. This concept is shown in Fig. 9, where x in this figure is the chosen  
fitness-proportionate value. 

 

Fig. 9 Parental selection 

3.3.3 Recombination 

Recombination comprises 2 phases: crossover and mutation. Crossover 
recombination is hybrid genotype resulting from the hybridization of 2 parent 
individuals. The nucleotides that form each individual are swapped at a random 
location to create the new individual (Fig. 10). Each offspring has some probability 
of not using crossover (crossover rate), in which case, the first parent in the parental 
pair is selected as the offspring (i.e., cloned). Once the offspring is generated, it is 
then subject to mutation at the mutation rate. In mutation recombination, each 
nucleotide in an offspring’s genotype is subject to change. This recombination 
process is demonstrated in Figs. 10 and 11. 
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Fig. 10 Crossover 

 

 

Fig. 11 Mutation 

Mutation occurs with drastically lower probability compared with crossover (Table 
1). Mutation serves its purpose of introducing extra diversity into the generations.8 
In this instance, a crossover probability of 70% and a mutation rate of 5% were 
chosen. A 70% crossover probability is typical for a genetic algorithm but a 
mutation rate of 5% is abnormally high. The mutation rate was chosen to be high 
because the intermediate population sizes (the population size of all generations 
except the first generation) were chosen to be very small. Larger intermediate 
populations were impractical due to the computationally intensive simulation 
process. 

3.3.4 Convergence 

The final component of a genetic algorithm is convergence. Once the offspring 
population has been generated, it must be analyzed for convergence. Upon 
convergence, an optimized individual, and thus a solution to the problem, may be 
ascertained. Convergence can be determined in a variety of ways as long as the 
optimized individual is coupled with the method of convergence that defined it. 
Due to the small size of offspring populations, the Student’s t-distribution is used 
as the convergence method. Equations 10–12 are the mean, variance, and standard 
deviation, respectively, where xi is the control parameter being analyzed. 

 𝜇𝜇 =  ∑ 𝑚𝑚𝑖𝑖𝑁𝑁
𝑖𝑖=1
𝑁𝑁

      (10) 

 < 𝑠𝑠2 >  =  1
𝑁𝑁−1

∑ (𝑚𝑚𝑚𝑚 − 𝜇𝜇)2𝑁𝑁
𝑚𝑚=1       (11) 
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 √< 𝑠𝑠2 >  = 𝑠𝑠      (12) 

In this case, the normalized difference between any 2 control parameters 
(normalized parameter niche size) is 1. The convergence condition chosen for this 
genetic algorithm is that the standard deviation of a given control parameter must 
be less than twice as much of the normalized parameter niche size for a given 
confidence interval. Once this condition is met for all 3 control parameter sets, the 
optimized individual is taken as the mode of each control parameter set. Confidence 
in the optimized individual is established by multiplying the standard deviation of 
a given control parameter, in the convergence condition, by a t-distribution 
confidence coefficient. The greater the confidence coefficient, the greater the 
confidence interval. Confidence ranges on a nonlinear scale from 50% to 99.9%. 
For this case, the confidence interval was chosen as 90%. 

4. Results and Discussion 

4.1 Generations  

The first generation is significant in both purpose and design. From Table 1 we see 
that the initial population size (31) is much larger than the intermediate population 
size (6). The initial population corresponds to the first generation, while the 
intermediate population size corresponds to every subsequent generation. 
Generation 1 is allowed to be significantly larger than the intermediate populations 
because it is random and could be applied to all 51 cases of α and M∞. A table of 
control parameter values for generation 1 is displayed in Table 2. 
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Table 2 Control parameter values for generation 1 

Individual Q1 

(mm) 
Φ 1 

(°) 
Φ 2 
(°) 

Individual 1 64.25 1.5 5 
Individual 2 1.25 0 4 
Individual 3 50.75 5.5 7.5 
Individual 4 19.25 4 5 
Individual 5 28.25 3.5 6 
Individual 6 37.25 7 3.5 
Individual 7 68.75 4.5 3 
Individual 8 28.25 4.5 6.5 
Individual 9 68.75 6.5 0.5 

Individual 10 19.25 6 1 
Individual 11 50.75 4.5 1 
Individual 12 46.25 1 3 
Individual 13 37.25 1.5 6.5 
Individual 14 50.75 7 6 
Individual 15 46.25 0 0 
Individual 16 10.25 3.5 3 
Individual 17 10.25 1 4 
Individual 18 68.75 7.5 3 
Individual 19 10.25 5.5 5 
Individual 20 1.25 4 5 
Individual 21 37.25 3.5 2 
Individual 22 64.25 0 3 
Individual 23 46.25 5 0 
Individual 24 14.75 0 7.5 
Individual 25 23.75 0.5 1 
Individual 26 32.75 4 0.5 
Individual 27 68.75 0.5 2.5 
Individual 28 10.25 6.5 1.5 
Individual 29 59.75 6.5 3.5 
Individual 30 46.25 5.5 2.5 
Individual 31 28.25 1 7.5 

 

Because generation 1 was completely random and the same individuals could be 
used for all 51 cases, it was decided to maximize the population size (for this 
optimization process, populations can range from 4 to 31). Thus, the greatest benefit 
is obtained for the lowest cost (31 individuals processed as opposed to 1581). 
Therefore, only one population of 31 individuals represents generation 1 across all 
51 cases. Generation 2 and beyond, however, require populations for each specific 
α and M∞. As mentioned previously, this is why the intermediate population size is 
so small. The phenotypes of generation 2 for Mach 2 at α = 8° are shown in Fig. 12. 
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Fig. 12 Generation 2 phenotype manifestation for Mach 2 at α = 8° 

4.2 Unique Cases 

Among the 51 cases in the test matrix of Mach number (2, 3, and 4) and 𝛼𝛼 
investigated (−8° ≤ 𝛼𝛼 ≤ 8°), there are specific cases that offer unique results. The 
unique results can be determined by examining the fringes of the test matrix or by 
gaining a general understanding of the cases available. The unique problems at the 
fringes of the test matrix can be found by simply observing the test matrix, while a 
general understanding of the cases available can be found by analyzing the 
aerodynamic coefficients of a random distribution of individuals. The pitching 
moment coefficient as a function of 𝛼𝛼 for generation 1 individuals at Mach 2 is 
plotted in Fig. 13. 
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Fig. 13 Pitching moment coefficient as a function of α for generation 1 individuals at Mach 2 

The fringes of the test matrix offer unique results because they are likely to 
demonstrate the greatest contrast between optimized individuals. For example, the 
geometry of optimized individual at Mach 2, 𝛼𝛼 = −8° can be compared with that 
of the optimized individual found at Mach 4, 𝛼𝛼 = −8° or at Mach 2, 𝛼𝛼 = 8° (same 
α, different M∞ or same M∞, different α). Similarly, the optimized individual found 
at Mach 4, 𝛼𝛼 = 8° could be compared with the same optimized individuals. Ideally, 
this will determine what makes the geometry of the optimized individual best. 

Other unique cases are found by analyzing Fig. 13. Each curve on the plot 
represents an individual simulated across the range of angles of attack at Mach 2. 
The first observation that should be made is that every configuration offers a 
maneuverability improvement over the baseline straight body configuration. It 
should also be understood that this comes with a drag penalty and an increase in 
normal force coefficient as shown in Figs. 14 and 15. Although only data at Mach 
2 are shown, Mach 3 and Mach 4 data sets show similar trends. 
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Fig. 14 Axial force coefficient as a function of α for generation 1 individuals at Mach 2 

 

 

Fig. 15 Normal force coefficient as a function of α for generation 1 individuals at Mach 2 
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An analysis of the axial force coefficient (Fig. 14) shows that the individuals 
diverge drastically in the same manner that pitching moment coefficient becomes 
increasingly nonlinear at higher α, although the range is much smaller. This 
demonstrates that for increased control authority there is also increased drag, which 
is not unexpected. Figure 15 shows that there is little difference between individuals 
in normal force coefficient. The data near high angles of attack diverge slightly 
more than that of the axial force coefficient (set size of CN is 46.2, while the set size 
for CX is 32.1 at α = 8°), but not to the extent that the pitching moment coefficient 
diverges (set size is 311.7 at α = 8°). The large variation in Cm means that its set 
size and, therefore, value score are larger and have the greatest effect on the 
objective function. This is in addition its having the largest priority score. 

Two trends in Fig. 13 highlight potentially unique cases. The most apparent case is 
the macroscopic trend across individuals and angles of attack. In a general sense, 
differences in pitching moment coefficient are linear at negative angles of attack 
and nonlinear at positive angles of attack. Intuitively, this makes sense because the 
configurations are only permitted to deflect in one direction. Thus, for a given 
shape, there is less projected area at negative angles of attack then at positive angles 
of attack. Since projected area is indirectly related to pitching moment coefficient, 
there will be greater diversity in pitching moment coefficient at positive angles of 
attack and less diversity at negative angles of attack. 

The second trend, which is less significant but still important, is that the Cm curves 
of the individuals cross (i.e., they are not parallel). This suggests that an optimized 
individual for one case will not necessarily be the same as an optimized individual 
at a different case. This is especially true considering optimized individuals at the 
fringes of the test matrix. 

Finally, Fig. 13 shows the optimized individual will likely result in an unstable 
configuration. This conclusion is drawn, as numerous individuals trim at an 
impractical angle or have no trim angle. These individuals would exhibit 
disastrously unstable longitudinal maneuverability if subjected to prolonged flight 
in that configuration. Therefore, the proposed flight scenario is to cruise in the 
baseline straight body configuration and to maneuver in the bent body 
configuration. 

4.3 Algorithm Functionality 

To ensure the algorithm is actually converging to optimized individuals, there are 
2 signs to look for: decreasing standard deviation and increasing average fitness. 
The algorithm may not converge in the first 3 generations but convergence can still 
be observed. As the algorithm iterates through successive generations, individuals 
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within the populations will become increasingly similar. This is because the 
algorithm is ultimately converging to the best answer (the optimized individual). 
The possibility does exist that the algorithm is converging on a local optimal 
individual. The chance of this happening has been minimized by starting with a 
large initial data set, implementing a strategy that can search the entire design space, 
and choosing a high mutation rate. If the concern remains that a local optimal 
individual is being reached, an evaluation of the parameters searched could be 
conducted to ensure that there are no significant gaps in the search. This final 
parameter evaluation has not been implemented at this time. 

In this particular case, generations 1 and 2 at Mach 2 can be analyzed. Generation 
1 is represented by 1 population of 31 individuals; generation 2 is represented by 
51 populations (17 angles of attack and 3 Mach numbers) of 6 individuals. Each 
individual represents 3 control parameters (Q1, Φ1, Φ2). Therefore, generation 1 is 
defined by 93 control parameter values and generation 2 is represented by 918 
control parameter values. The results are analyzed assuming that all 51 populations 
of generation 2 should decrease uniformly in standard deviation.  

Using the same notation from Fig. 2, the control parameters’ statistics are displayed 
in Fig. 16. As mentioned earlier, on a normalized set scale, each control parameter 
becomes an integer between 1 and 16. This allows statistical comparison across any 
control parameter from any population within any generation. Generation 1, as 
expected, is evidently random because the mean values are close to the median 
value of the design space. As a second characteristic of a random population, the 
standard deviation is almost uniform across the control parameters.  

 

Fig. 16 Statistical comparison between generations 1 and 2 at Mach 2 
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At the bottom of Fig. 16, we see the mean standard deviation within each population 
for each 𝛼𝛼. From these averages, it is obvious there is no correlation between the 
populations. Despite only analyzing 1 iteration of the algorithm with almost 1000 
control parameters, it is concluded that the algorithm is converging because the 
mean standard deviation across all the control parameter values has decreased by 
an average of 22%. 

To ensure that successive generations are achieving increased performance, the 
fitness scores must be compared carefully. The fitness scores (calculated by the 
objective function) within each generation are only relevant to their respective 
generation because the objective function also considers the size of each set of 
aerodynamic coefficients (niche is taken as 0.01). This metric is dynamic 
throughout the algorithm so comparing the calculated fitness scores is meaningless. 
Comparisons of fitness scores become valid when average value of a coefficient is 
taken from one generation and its value score calculated within the coefficient set 
(min, max, set size) of another generation. The fitness comparison is made in this 
manner between generations 1 and 2 at Mach 2, 𝛼𝛼 = 8° in Tables 3 and 4. Figure 17 
shows the set size of each of the aerodynamic coefficients has significantly 
decreased between generations 1 and 2 at Mach 2, 𝛼𝛼 = 8°. Even after just 2 
generations, the benefit of the genetic algorithm is apparent. 

Table 3 Aerodynamic coefficient value comparison between generations for Mach 2, α = 8° 

Aerodynamic 
coefficients 

Generation 1 
(Average) Min Max Set size Generation 2 

(Average) Set size 

Cm 0.49 –1.09 2.02 311.73 1.16 85.69 
CN 1.14 0.93 1.39 46.24 1.24 15.75 
CX 0.59 0.45 0.77 32.11 0.60 10.02 

 

Table 4 Fitness score calculation comparison between generations for Mach 2, α = 8° 

Generations CX 
Value score 

CN 
Value score 

Cm 
Value score Final fitness score 

1 24.34 37.77 75.41 52.11 
2 23.82 41.14 179.26 104.43 
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Fig. 17 Aerodynamic coefficient evolution across generations 1 and 2 for Mach 2, α = 8° 

Not surprisingly, generation 2 shows increased performance. What is surprising is 
by how much and why. The final fitness score has increased by over 100% from 
generation 1 to generation 2 when generation 2 is considered within the coefficient 
set of generation 1. This remarkable improvement can be attributed to both the 
effective optimization of the algorithm and the nature of the problem. From Fig. 13, 
it is concluded that the greatest spread in pitching moment coefficient occurs at the 
highest angles of attack. Therefore, more improvements can be expected at higher 
angles of attack compared with lower angles of attack. 

Table 3 shows that the pitching moment coefficient was improved the most by the 
vector-evaluated genetic algorithm between generations 1 and 2. It also had the 
greatest impact on directing the shape of the projectile in this iteration due to it 
having the largest set size (range of values). The highest priority coefficient was 
given to Cm, as it was believed that the pitching moment coefficient was important, 
but the inherent importance further emphasized the metrics’ influence on projectile 
shape. Simultaneously, the other coefficients had a much lower influence on the 
shape of the projectile. This is not only evident by the substantially smaller set sizes 
but also the changes in average coefficient value across generations (although this 
is also influenced by the lower priority coefficient). The axial force coefficient 
actually increased despite desired minimization, while the normal force coefficient 
only increased slightly. The increase in Cx is undesirable but also necessary, as this 
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is a small sacrifice allowed for larger Cm values. Unfortunately, this is only one 
particular case out of the 51 different cases and it cannot be assumed that it is 
representative of the entire test matrix. It is possible that by using multi-objective 
optimization rather than vector-evaluated optimization that Cx could truly be 
minimized while maximizing Cm. However, the currently vector-evaluated 
optimization should provide a sufficiently good answer from which to determine if 
enough maneuver authority could be generated. 

5. Conclusion 

Unique cases of bending body projectiles as well as genetic algorithm functionality 
for vector-evaluated optimization were analyzed for generations 1 and 2 at Mach 2. 
The resulting analysis revealed that fringes of the test matrix suggest further 
research will show unique differences in the optimized individuals. A deeper 
investigation discovered that nonlinear sections of the aerodynamic coefficient data 
also suggest unique cases within the test matrix. Algorithm functionality shows 
great promise with an observed decrease in standard deviation and an observed 
increase in fitness score. This is strong evidence, although not concrete, that the 
algorithm is not only converging, but also converging to a globally optimized 
individual. 

Further research that needs to be completed includes optimization of the entire test 
matrix and analysis of the flow field of optimized individuals to compare with the 
baseline straight body configuration. This comparison should expose why 
optimized individuals exhibit increased performance compared with the straight 
body configuration. The projectile concept might also be improved by transitioning 
away from discrete, rigid bends and toward a continuous curve. Bezier control 
points offer a method of modeling a continuous shape while still using the discrete 
control points required for the genetic algorithm. A continuous projectile shape may 
have improved drag performance, but may prove more difficult to control because 
the location of the expansion fan could wander along the curve. More analysis 
needs to be done to conclude the optimal curve or number of bends required to 
maximize maneuverability and controllability. 
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List of Symbols, Abbreviations, and Acronyms 

M∞  freestream Mach number 

𝐶𝐶𝑚𝑚  pitching moment coefficient 

𝐶𝐶𝑁𝑁  normal force coefficient 

𝐶𝐶𝑋𝑋  axial force coefficient 

𝐹𝐹𝑁𝑁  normal force 

𝐹𝐹𝑋𝑋  axial force 

𝑐𝑐∞  freestream pressure 

< 𝑠𝑠2 > variance 

3-D  3-dimensional 

AFF  Air Force Finner 

CAD  computer-aided design 

CFD  computational fluid dynamics 

CG  center of gravity 

D  projectile diameter 

DOD   Department of Defense 

FSB   Flight Sciences Branch 

HPCMP High Performance Computing Modernization Program 

M  pitching moment 

MIME  Multipurpose Intelligent Meshing Environment  

N  number of individuals in a given generation 

Q1  location of the second bend relative to CG 

S  area of the projectile 

s  standard deviation 

wi  final fitness score of an individual 

wmax  maximum final fitness score of the generation 
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μ   mean value 

Φ1  first bend angle 

Φ2  second bend angle 

𝛼𝛼  angle of attack 

𝛾𝛾  gas constant for air 
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